
GENERAL

Use real tabs that equal 4 spaces.

Use typically trailing braces everywhere (if, else, functions,
structures, typedefs, class definitions, etc.)
if (x) {
}

The else statement starts on the same line as the last closing brace.
if (x) {
} else {
}

Pad parenthesized expressions with spaces
if (x) {
}

Instead of

if (x) {
}

And

x = (y * 0.5f);

Instead of

x = (y * 0.5f);

Use precision specification for floating point values unless there is
an explicit need for a double.
float f = 0.5f;

Instead of
float f = 0.5;

And
float f = 1.0f;

Instead of
float f = 1.f;

Function names start with an upper case:
void Function(void);

In multi-word function names each word starts with an upper case:
void ThisFunctionDoesSomething(void);

The standard header for functions is:
/*
====================
FunctionName

 Description
====================
*/

Variable names start with a lower case character.
float x;

In multi-word variable names the first word starts with a lower case
character and each successive word starts with an upper case.
float maxDistanceFromPlane;

Typedef names use the same naming convention as variables, however
they always end with "_t".
typedef int fileHandle_t;

Struct names use the same naming convention as variables, however
they always end with "_t".
struct renderEntity_t;

Enum names use the same naming convention as variables, however they
always end with "_t". The enum constants use all upper case
characters. Multiple words are separated with an underscore.
enum contact_t {

CONTACT_NONE,
CONTACT_EDGE,
CONTACT_MODELVERTEX,
CONTACT_TRMVERTEX

};

Names of recursive functions end with "_r"
void WalkBSP_r(int node);

Defined names use all upper case characters. Multiple words are
separated with an underscore.
#define SIDE_FRONT 0

Use ‘const’ as much as possible.
Use:
const int *p; // pointer to const int
int * const p; // const pointer to int
const int * const p; // const pointer to const int

Don’t use:
int const *p;

CLASSES

The standard header for a class is:
/*
===

Description

===
*/

Class names start with "id" and each successive word starts with an
upper case.
class idVec3;

Class variables have the same naming convention as variables.
class idVec3 {

float x;
float y;
float z;

}

Class methods have the same naming convention as functions.
class idVec3 {

float Length(void) const;
}

Indent the names of class variables and class methods to make nice
columns. The variable type or method return type is in the first
column and the variable name or method name is in the second column.
class idVec3 {

float x;
float y;
float z;
float Length(void) const;
const float * ToFloatPtr(void) const;

}

The * of the pointer is in the first column because it improves
readability when considered part of the type.

Ording of class variables and methods should be as follows:

1. list of friend classes
2. public variables
3. public methods
4. protected variables
5. protected methods
6. private variables
7. private methods

This allows the public interface to be easily found at the beginning
of the class.

Always make class methods ‘const’ when they do not modify any class
variables.
Avoid use of ‘const_cast’. When object is needed to be modified, but
only const versions are accessible, create a function that clearly
gives an editable version of the object. This keeps the control of
the ‘const-ness’ in the hands of the object and not the user.
Return ‘const’ objects unless the general usage of the object is to
change its state. For example, media objects like idDecls should be
const to a majority of the code, while idEntity objects tend to have
their state modified by a variety of systems, and so are ok to leave
non-const.
Function overloading should be avoided in most cases. For example,
instead of:

const idAnim * GetAnim(int index) const;
const idAnim * GetAnim(const char *name) const;
const idAnim * GetAnim(float randomDiversity) const;

Use:
const idAnim * GetAnimByIndex(int index) const;
const idAnim * GetAnimByName(const char *name) const;
const idAnim * GetRandomAnim(float randomDiversity) const;

Explicitly named functions tend to be less prone to programmer error
and inadvertent calls to functions due to wrong data types being
passed in as arguments. Example:
Anim = GetAnim(0);

This could be meant as a call to get a random animation, but the

compiler would interpret it as a call to get one by index.
Overloading functions for the sake of adding ‘const’ accessible
function is allowable:
class idAnimatedEntity : public idEntity {

idAnimator * GetAnimator(void);
const idAnimator * GetAnimator(void) const;

};

In this case, a const version of GetAnimator was provided in order to
allow GetAnimator to be called from const functions. Since
idAnimatedEntity is normally a non-const object, this is allowable.
For a media type, which is normally const, operator overloading
should be avoided:
class idDeclMD5 : public idDecl {

const idMD5Anim * GetAnim(animHandle_t handle) const;
idMD5Anim * GetEditableAnim(animHandle_t handle);

};

id Studio Names

id<name>Dlg // dialog class
id<name>Ctrl // dialog control class
id<name>Frm // frame window
id<name>View // view window
id<name> // any other class

FILE NAMES

Each class should be in a seperate source file unless it makes sense
to group several smaller classes.
The file name should be the same as the name of the class without the
"id" prefix. (Upper/lower case is preserved.)
class idWinding;

files:

Winding.cpp
Winding.h

When a class spans across multiple files these files have a name that
starts with the name of the class without "id", followed by an
underscore and a subsection name.
class idRenderWorld;

files:

RenderWorld_load.cpp
RenderWorld_demo.cpp
RenderWorld_portals.cpp

When a class is a public virtual interface to a subsystem the public
interface is implemented in a header file with the name of the class
without "id". The definition of the class that implements the
subsystem is placed in a header file with the name of the class
without "id" and ends with "_local.h". The implementation of the
subsystem is placed in a cpp file with the name of the class without
"id".

class idRenderWorld;

RenderWorld.h // public virtual idRenderWorld interface
RenderWorld_local.h // definition of class idRenderWorldLocal
RenderWorld.cpp // implementation of idRenderWorldLocal

	And
	Typedef names use the same naming convention as variables, however they always end with "_t".
	Struct names use the same naming convention as variables, however they always end with "_t".
	Names of recursive functions end with "_r"
	The standard header for a class is:
	Class names start with "id" and each successive word starts with an upper case.

